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THE APPROXIMATION NUMBERS yn (T)
AND Q-PRECOMPACTNESS
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Abstract. We shall introduce the sequence (v, (7)) of approximation numbers for a linear .
operator T between p-Banach spaces (0 <p<1) and consider Q-precompactness in a metric
linear space.

Introduction. Recently Pietsch [5] has introduced the concept of an approxi-
mation scheme on Banach spaces. The first author [1] has generalized this notion so
that the usual approximation numbers can be deduced as special cases of an approxi-
mation schme, she then used these to generalize the concept of approximation
numbers and Kolmogorov diameters in Banach spaces and studied the resulting con-
cept of Q-compactness which is a proper extension of compactness.

In this paper we consider those results in the context of p-Banach spaces (0<p
< 1) or general metric linear spaces. In Section 2 we introduce the sequence of
numbers (¥, ) associated with a bounded set in a p-Banach space and study the
relations between &, (T), Tn(T) and 8,(T) for an operator T between p-
Banach spaces. In Section 3 we discuss the relation between ay (T), Yn(T) and
those of T’ in Banach spaces. In the final section 4 we consider Q-precompactness
in a metric linear space and prove a Dieudonné-Schwartz type characterization of
Q-precompact sets in a p-normed space. . :

1. Preliminaties, -Let £ be a topological vector space over the field X of real or
complex numbers and N be the set of all non-negative integers. Foreach n€N, let
On =Qpn(E) be a family of subsets of £ satisfying the following conditions :

(1) {0}=0,C0;C*++CQpC"%,
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(2) AQ,CQp forevery nEN and AEK,

(3) Qn+QmCQn+m forevery n,meN.
Then Q(E) = (Qn(E))nen is called an approximation scheme on E. We shall
simply use Q) to denote Q,(E) if the context is clear.

Let U be a O-neighborhood of E and D abounded subset-of E. Then the n-
th Kolmogorov diameter 8,(D, U ; Q) of D with respect to U is defined by

55(D,U;Q)=inf {A>0: DCAU+A, forsome 4, EQy}.

Let p be a number with 0<p<1. Then,bya pnorm ||+|| on £ we mean a
map ||+]l of E into K which has the following properties :

(1) lIxl>0 forevery x€E, and ||x||=0 ifand only if x=0,

(2) NIAxil=IA]llx]l forevery xEE and AEK,

(3) lx+ylIP<lxIP+IylIP forevery x,y EE.
If a topology of E is induced by a p-norm, then E is said to be a p-normed space. If
the p-normed space E is complete, then E is said to be a p-Banach space. We denote
by /g the closed unit ball of the p-Banach space E. Then Ug is an absolutely p-
convex set, which means that Ax+ny €Ug forevery x, yEUg and every A, n€K
with |A|P +|7]P? < 1. Let E be a q-Banach space and F be a p-Banach space. We
denote by L (E, F) the vector space of all continuous linear mappings of E into

F. Then, foreach TEL(E, F) IiTli=sup {liTxll: xE€EUg } evidently definesa
p-norm |- }j ‘on L(E, F).

2. The numbers &y (T), Yn(T) and 8,(T). Let D be a bounded subset of
a p-Banach space E. Now we defines the sequence (7, (D, Q)) by

7H(D)57H(Dr Q)
=inf {A>0: DCAUg+T(Uyx) and T(Ux)CA, forsome
p-Banach space X, T€L(X,E) and A, CQn(E)}.

We start with the following proposition.

Proposition 1. Let C and D be bounded subsets of a p-Banach space E. Then
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(1) 7vn(aD)=|alyy(D) for nEN and ¢€K,
(2 Ym+n(C+DYP <7 (C)P +7,(D)? for m, nEN.

The Kolmogorov diameter &, (D, Ug ;Q) has similar properties. -

Proof. (1) is trivial, To prove (2), let 7,, (C)<A and v,(D)<7. Then
there exist p-Banach spaces Xj;, T;€EL(X;, E) (i=1,2), Ay €Qm and Ay €
Qn such that

CCAUg+Ty(U,), T1(U1)CAm
and
DCqUg+T3(U;), Ta(Uz)CTAp,
where U; denotes the unit ball of X; (i=1,2). Hence
C+DC(N +0P Y P Ug+T (U, )+T,(Ua)

and Ty (U )+ T3(U;)CAp+Ap €Qmsen. Let X=X; X X, be theset of
all pairs (x;, x;) with x; €X, ‘and x, € X;. Then it is easily seen that X
becomes a p-Banach space with respect to the maximum norm [[(x;, x32)II =
max([Ix, I, x5 II). Let P; be the projection of X onto X;. Then, by putting
T=T,P, +T,P,, weobtain

T(Ux) = TPy (Ux) + TaP2 (Ux) =Ty (U1)+ T2 (U2 )CAmen €Qm+n
and C+D C (NP +7P) /P Uy + T(Uyx). Thus we have ¥+ (C+D)P <AP +
nP, and the assertion is proved for (7). We can easily prove the assertion for
8,(D, Ug ;@) and omit the proof. ~

We denote 8, (D, Ug ;Q) by 8,(D).

Theorem 1. Let D be a bounded subset of a p-Banach space E. If every ele-
ment Ayp of Qn (n€E€N) is closed and absolutely p-convex, then 7, (D)=8,(D).

Proof. The inequality &, (D) <7,(D) is trivial. Assume that S,(D)<LA.
Then D C AUg + A, forsome A, € Q,. By assumption of boundedness of D,
there exists: M > 0 such that ||d|| <M forall dED. Since each element d of D
. is written as -
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d=Au+a (UEUE, a€A,), .
we have
lallP =|ld~ AullP <MP +2P,

Hence llall < (MP +AP)'/P If we put K =max {1, (MP +AP)"/P} and V=
Ug NA,, then we have ‘

DCANUg+KV, KVCKA,EQ,.

Let X be the vector space generated by 4,, gy the Minkowski functional of
Vad Vg={x€EE: qp(x)<1}. Then V=V, because V isclosed. Let  be
the identity map of the p-normed space (X, qy) into £ and T be the unique
extension of 7 to the completion X of X. Then we obtain

DCANUg+KI (Vg) and KI(V4)CKAp €0y,

which implies v, (D)<, i.e., v,(D)<8,(D).

From now on we deal with the approximation numbers of operators of a ¢-
Banach space E into a p-Banach space F. We now additionally assume that the
given approximation scheme Q =(Q,) satisfies the following condition :

If TEL(E,F) and A CA,E€Qp(E), then there exists B, € Q,, (F) such
that T(A)CB,.

Given an approximation scheme Q, a g-Banach space E and a p-Banach space
F, for TEL(E, F) the n-th approximation number a,(T) with respect to Q
is defined by

an(T)=inf {IT-SI: S(E)C A, forsome SEL(E, F)
and some A, €Qn(F)1},

where S(F) means the image of £ by §. We define 6,(7T) and y,(T) by
81 (T)=8,(T(Ug)) and v, (T) =7, (T(Ug)), respectively.

Theorem 2. Let E be a g-Banach space, F a p-Banach space, G a r-Banach
space, S, TEL(E,F) and REL(F,G). Then

(1) NITN=70(T)=7:(T)=:++ Z7,(T) 30,
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(2Y Yn(AT)=|X|7n(T) for N\EK and nEN,
3)  Ym+n(S*TIP vy (8)? +7,(T)? for m,nEN,
(4) If p=7, Ym+n(RT)< vy (R)715(T) for m,nEN.

These relations are also valid for a,(T) and §,(T) and the assertion (4) is valid
for these numbers without the assumption p =r.

Proof, Case of 7,(T). (1) is evident because Qo = {0}. (2) and (3)
follow immediately from Proposition 1. To prove (4), let v, (R)< g and
7n(T) < A. Then there exist p-Banach spaces X, Y, Am €Qm(G) and B, €
Qn (F) such that

R(Up)CpUg+K(Ux), K(Ux)CAm,
T(Ug)CAUp+L(Uy), L(Uy)CB,
for suitable K€L (X, G) and L EL(Y, F). Then we obtain
RT(Ug)CAR(Up)+RL(Uy)
CAuUg +AK(Ux) +RL(Uy).

Now, as in the proof of Proposition 1 (2), we can construct a p-Banach space Z =
X X Y and an operator M €L(Z, G) such that RT(Ug)C AuUg +M(UVz)
and M(Uz)C Cpsn forsome Cpyip in Qm+n(G). Thus we obtain Ym+n(RT)
<\, which implies Ym4n (RT) <¥m (R)71n (T).

Case of ay(T). Let ap(R)<p and a,(T)<A. Then there exist A, €
Qn(F) and B,y €0y (G) such that

IT-LI<A, L(E)CAy,
IR-KlI<p, K(F)CBm

for some L EL(E, F) and K €EL(F, G). By letting M=KT+(R-K)L, we
have RT-M=(R-K)(T-L) and M(E) =KT(E) +(R - K)L(E). Since
L(E)C Ay,  there exists: A’y € @, (G) such that (R — K)L(E) CA', from the
assumption on Q. On the other hand, KT(£) C K(F) C Bm. Hence we have
M(E)CCman for Cmsn=A"'n+Bm €0Om+n(G) and
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m+n (RT)<IRT-MI<IR-KIIT-LI<pA,

which implies @y 4y (RT) <apm (R)ay (7).
Since the other inequalities for a,(T) and &§,(T’) are easily verified, we omit.
the proof,

Let E and F be p-Banach spaces and TE€L(E, F). T issaid to be a metric
surjection if T miaps the open unit ball of £ onto the open unit ball of F. A p-
Banach space E is said to have the metric lifting property if for every metric surjec-
tion Q€ L(F,, F) and every TEL(E, F), given €>0, wecan find SEL(E,
Fo) with T=0S and |IS||<(1+e)lI T|l, where F and F, are arbitrary p-
Banach spaces. The p-Banach space 2,7 has the metric lifting property for any index
set 1 (see [3]).

For a p-Banach space £ we put ES% =¢,7 where I=Ug’ and we definea
surjection Qf of E®YT onto E by Qp(£x)=Z&xx for ((x)xer€2s”. Then
QF is a metric surjection (see {3]).

Proposition 2. Let E bea q-Banach space with the metric lifting property,
F be a p-Banach space and T € L(E, F). Then the equality a,(T)=0a,(TQg)
holds.

Proof. Given € > 0, for the identity map Iz of E there exists S € L (E,
E®Y") suchthat QpS=Ig and |SI<(1+e)llIz]l=1+e. Hence

an(TQp)<an(T)=an(TQpS)<en(TQr)USI<(1+e)an(TQE),

which proves the proposition.

Let T be an operator of a q-Banach space E into a p-Banach space F and N
be a closed vector subspace of F. We denote by Qf,':, the canonical surjection of F
onto the quotient space E/N. We consider all closed subspaces N of F such that
NCA, forsome A, €0, (F), and put B, (T)=inf[|Q% Tll. Then we obtain
a result similar to the known one on Kolmogorov numbers, -

Theorem 3. Let TEL(E,F). Then

an(TQe)=Bn(T) = 8,(T).
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Proof, Since the equality 8, (T)=8,(T’) follows immediately from the defini-
tion, we prove a, (TQgr) =Bn(T). Let N be a closed subspace of F such that
NCA, forsome A, € Q0,(F) and let €>0. Since E®YT has the metric lifting
property, for the operator va TQg there exists: S €L (E*"*, F) such that Qf,s =
0% TQr and IS Il < (1+e)l @y TIl. By setting L =TQg — S, we have an opera-
tor L €L (E*®*, F) such that L (ES"")CN CAy,. Hence

an(TQE) <UTQg - LU=ISH<(1 +e)I QR TH,

which proves that a, (TQg) <Bn(T).

To show the equality, given e > 0, we choose LE L(E®®", F) such that
L(E®™)CA, forsome A, in Q,(F) and 1TQg - LI <(l+e€)a,(TQEF).
If we put N=L(E®"), then NCA, and

1e5 =105 785 1=1Q%(TQs - L)
<ITQg - LI<(1+€)an(TQE).

Therefore B (T)< an(TQg). Thusthe theorem is proved.

3. Relations between a, (T), ¥o(T) and those of T'. In this section, for an
operator T between Banach spaces we investigate the relations between the number
a, (T), 7o (T) and those of dual operators T'. For that purpose, we assume that
each element A, € @, is a closed subspace of a Banach space considered. We essen-
tially follow the method of Astala [2].

First we need the following lemma according to Astala {2].

Lemma. Let E, F, X, and X, be Banach spaces, Assume that E has the
metric lifting property and operators TEL(E,F), SEL(X,, F)and REL(X,, -
F) satisfy: the.condition.

T(Us)CS(Ux, )*RWx,), ~
Then for any € >0, thereare operators K; €L (E, X;) (i=1,2) suchthat T=
SK,+RK, and |K;lI<1+e,

Let TEL(E, F) ind Qf be the.canonical surjection of E*Y" onto E. Then,
by Theorem 3 we have
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5,(T) =an,(TQr)<an(T)ITQE Nl=an(T),

i.e. 8,(T) < an(T), and so, by Theorem 1 we obtain v, (T') < a,(T). We
don’t know whether the equality v, (T)=a,(T") generally holds or not. The next
result will be proved in this context.

Theorem 4. Let E and F be Banach spaces and TGL(E‘, F). If E has the
metric lifting property, then v, (T) =a,(T).

Proof. We must show the inequality a,(T) <v,(T) holds. Let v,(T)<
A. Then there exist a Banach space X and T€L (X, F) such that

T(Ug)C AUgp+L(Uyx) and L(Ux)CAn

for some A, € Qp(F). By Lemma, for every € with 0<e<1, thereare K, €
L(E,X) and K, EL(E, F) suchthat |[K;ll<1+e ({=1,2) and

T=LK] +MFK2 =LK1 ".'RKQ.

Then || T — LK, Il =Xl K5 I SA(1 +€). On the other hand, since LK, (Ug)C
L(2Ux)C 24, we obtain

LK; (E) =LK3 ( L>)o IIUE)=UI1LK1 ('UE)CU2pA,, =An.
B

Hence LK, (E)CAy,. Thus we have a,(T)<\ and an(T)<7,(T), which
proves the theorem, -

Corollary, Let TEL(E, F). Then
'Yn(T):an(TQE)g“n(T)'

Proof. From Theorem 4 and the fact that Q is a-metric surjection, it follows -
that
10 (T)=1n (TQE) = (TQ5) <o (TYIQE I = an (T).

We next study the relations between 7, (T), 7, (T') and 7,(7"). For T€
L(E, F) we need the following symmetric property on an approximation scheme

(Qn):-
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If T(A)C Ay € 0,(F) (A CE), thenthere exist a subset BC F' and
Bn EQn (E') such that T' (B)CB',.

Propostition 3. Let E and F be Banach spaces, TE€L(E, F) and Jp be
the canonical injection of F into F". Then v, (JgT)=v,(T"). In particular, if
F isadual space, then v (T)=yu(T"). - N

Proof. For x€EF, yEF' and zEF", we have

(x, )=, Jpx)={Jpx, Jp'y)={x, (Jr) Jp' ¥}

and

2, 2)=ATr) Try, 2)=Tpy, (Jr)'2)=(y, (JF') (Jr)"2).

Hence we obtain
(Ur) Fpe=Ig and (Jp) (Jp)' =Ipn. *)

Since a, (T')<SIT' -L'}=0T-LI, ep(T')<a,(T) forevery TEL(E, F).
From Corollary of Theorem 4, we obtain

Ta(T")= 7 (T" Q") <en(T" Q") <an(TQg) =71 (T"),

which proves the first assertion.
Assume that F is a dual space of a Banach space G. Then we apply the former
formulain (*) with F replaced by G to get

Yr(T)=vn (V' TpT) <7 (JFT) <7n(T),

which completes the proof.

Let £ and F be Banach spacesand TE€L(E, F). Then T is said to be a
metric injection if | Tx||=|Ix}] forall x €E, and E is said to have the metric
extension property if for every metric injection. JE L (E,, E) and every Ty €
. L(E,, F) wecanfind TEL(E, F) with .To =TJ and ([Tl =[|To ||, where
E and E, .are Banach spaces. It is well known that the Banach space 27 has the
metric extension property for any index set- 7, °

Theorem S, Let E and F be~Bqnach spacesand TEL(E, F). If F hasthe
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metric extension.property, then
(T )=an(T")=an(T).

Proof. The inequalities v, (T')<an(7')<a,(T) follow from Corollary of
Theorem 4 and the proof of Proposition 3. To verify the equalities, assume that
vn(T') <. By Corollary of Theorem 4, there exists an operator L of (F')swr
into £’ such that

1T Qg = LII<A, (**)

where QF denotes the canonical surjection of (F')*"* onto F. Since Qf+ maps
the unit ball of (F')*“* onto the unit ball of F', (Q;..)' is a metric injection of
F" into F,, where Fo denotes the dual of the Banach space (F')*"". By letting
J=(Q%+)'Jr we obtain a metric injection J of F into Fo. As F has the metric
extension property, there exists P €L (Fq, F) such that PJ=If and ||P||= gl
=1 for the identity map Iz of F. Now the inequality (**) implies '

an(T)SIT=PK' T =IPUT-K'TE)ISIIT - K' Tl
=S Tr-K'Tell=I(@E ) T"Te-K' Vgl
<L) T'—K'I<IT Qp - KII<A.
Therefore an (T) <7, (T') and we complete the proof.

Corollary, Let TEL(E, F). If E has the lifting property and F has the
extension property, then

‘Yn(T)='Yn(T') and 5n(T)=5n(T')'
Proof. The assertion is clear from Theorems 1, 4. and 5.

4. Q-precompactness of bounded sets in a metrizable topological vector space.

Let E be a metrizable topological vector space. A bounded subset D of E is
said to be Q-precompact if 5, (D,U;Q) +0(n->) for each 0-neighbourhood U
of E. We assume that each A, € Q,(n EN) is separable, Then it is evident that
Q-precompact sets are separable. A sequence (*n,&)n,ke N in E issaid tobe of
order (co ) if the following hold :
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(1). Forevery n€N there existsan Ap €Qp and (xn,x )k CAy,
(2) xp,k—>0 as n->ce uniformlyin k.

Theorem. Suppose that E is a metrizable topological vector space with an
approximation scheme {Qn } and each element. A € Qy issolid (i.e. I\ |4nC
Ap for |\|<1) andlet p bean arbitrary positive number. If a bounded subset D
of E is Q-precompact, then there exists-an order (co) sequence (Xxn, k)x Such
that '

Dc{ Z « : € , 4 ;
{nEN nXn,k(n): Xn,k(n) (xn,k )k néNlanl <1}
In particular, if E isa p-normed space (0<p<1), then the converse holds.

Proof. Suppose that D is Q-precompact. Let (U,) (nE€EN) be abase of
0-neighborhoods of E suchthat Uy 4y +Upsy CU, and the diameter of U, con-
verges to O as n—>o°, andlet « bea scalar with |a| 2 1. Then there exist an
integer no €N and A, €0y such that

aDC Uy +A4n, (1)

because the set aD is Q-precompact. Let Fp be a countable dense subset of A _ .
Then we have (aD + Uy ) N Fy, #¢. In fact, for every d €D thereexist u€ U,
and a €4, with ad =u +a by (1). Since Fp isdensein A, , there exist
u' €U, and wEF,, with a=u'+w. Therefore ad =u +a=(u+u')+w€
Uy + Uy % Fn, CUo+Fn,, i.e. aDCUo+Fp,. Thus (aD +Us) N Fn,
#6. We put :

Bo=(aD+Uo)NFy, . (2)

Then for every d €D there exist u €Uy and wEF, | with ad=utw, and so
wE B, and then

aDCBy+U,.
We put
Do =(aD-Bo)NU,. (3)

Then D, is Q-precompact. In fact, for every € >0 and O-neighborhood Uy there
“exist mEN and Ap € Q,, with:aD C'eUg +A4,,. From By CFy CApn, it
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folows that
Do CaD— By Celg+(Am+An,).

and A,y + Ay, €Qm+n,. Therefore Do is Q-précompact. Now by (3), for
every d€D wecan find by €By (CFy) such that

ad — by EDy (CU,). (4)

If we put (x0,k)k = {bo €Bo : dED}, then (xg )i is at most countable
because bo €Fp, .

Since aly is Q-precompact, as before, there exist n; € N and An, €Qp,
such that aDo C Uz + A, -, then we have (aD, + U, )'OF,,‘ # ¢ for every
countable dense set F), , of Ay .-Weput

By =(aDo+U,)NF,, and Dy =(aDo-B,)NU,." (5)

Then for every dg € D, we can find b, €B, '(CF,,,) such that ady —b; €D,
(CUy), ice.a(@ad—bo)—by =a’d—(abo+by)ED,. Thentheset (xy, )k
= {by €B, : dg €D, } is at most countable. By continuing the same process we
can define

B =(aDp 1 +Un)NFy, (6)
for every countable dense set F,  of Ay, . Then
aDy 1 CBy U,
and we put
Dy =(aDm_y =B )NUp. (7)

Suppose that for every d €D there exist :b; €EB; (0<i<m—1) suchthat d'=
a™ld —(a™"2by + ... ¥bym_1).C Dp_,. Since forevery dpy_y EDpm_,
there exists b,, €B,, with adp, _y — b, €Dy, , we can find b,, €EB,, such that
ad' — by €Dy, L)

ad— (™ 1by+...4bym)ED,,.

1: R I 1. 1 ..
Therefore d—(? Do *+.. '+:ﬁb"’)eFDm C;-'F,U,,,CU,,,, ie, d=
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l . .t .
ngN prry bp. Nowweput (x, )k ={bn€Bp: aDp_1 — b, ED, }. Then
for every K €EN, xp x EBy CaDp_1+Up Calp_y:t Un21 Ca(Uy_y + .
Up_1).CaUp_,. Therefore (xp, k)i =0 as oo uniformly with respect to k.

fweput a=2"/7 and N\, =1/a"*!; then we have d= X MA,b,, and’ Z
neN neN
AP <1,

Now we have shown that every element x of D is written in the following form
=3 , T |ap,lP <1,
X ieN“n,xnl,k(n,) lENI n,l

where- xp, k(n;) € Fny CAp, and Fp, isdensein 4,,€Qn,- For each m with
n; <m<ngsy weput apm =0 and (xpm,k)k = (*¥ng,k)k- Then (Xm ke C
An,;€0nC0m and we have

x= 3 0y.X = Z oapx
jeN ny*ngkng) meN mXm,k(m)

and 2 laplP= 2 lag, P <1,
mENI ml neN, mik

Thus the assertion is proved.
Conversely, suppose that E is a p-normed space and for each n €N there exist
Ap€Qp and (xp x)x CAp suchthat x, x>0 as n—>e uniformly in k¥ and

DC{ 2 aux 1 x Exmirk, = laglP <1)}=C
{neN n¥n,k(n) *n,kn) EGni)k nl }

Thus it is enough to show that C is Q-precompact. By the assumption, for every
€>0 there exists m €N suchthat [x, g <€ forall k and n>m. Since each
element ¢ €C can be written as

m (- -]
c= X 0pXp k(n)t .2 OpXp,k(n)s
n=0. n=m+l1

m. m ~
wehave, B @ Xp k(n) € Z0pAnC L Ap=A g1 €Qpe andfor v= 2
n=0 n=0 - n=0 .

n=m+1.

" QpXp, k(n) we have

W2 < T lenlPlxneeml? <€ S janlP)<ef,
n=m+1 . n=m+1l
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i.,e. vEeUg. Thus CCelUg +Zma and so §,(C)—>0 as n->co, Therefore
D is Q-precompact.

Remark. In case that E isa p-normed space and @, is the set-of all at most n-
dimensional subspaces of £, we can show that the Q-precompactness of a bounded
subset D coincides with the usual definition of the precompactness of D. In other
wards, 8,(D) >0 as n-> oo ifand only if, given €>0, there exists a finite subset

n.
{x1,%2,...,%n }CD such that DCiEJl {x;+eUg}.

The authors wish to express their sincere gratitude to Professor M. S. Ramanujan
for his suggestions and guidance.
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